Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
نویسندگان
چکیده
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
منابع مشابه
Remotely powered self-propelling particles and micropumps based on miniature diodes.
Microsensors and micromachines that are capable of self-propulsion through fluids could revolutionize many aspects of technology. Few principles to propel such devices and supply them with energy are known. Here, we show that various types of miniature semiconductor diodes floating in water act as self-propelling particles when powered by an external alternating electric field. The millimetre-s...
متن کاملFully integrated miniature device for automated gene expression DNA microarray processing.
A DNA microarray with 12,000 features was integrated with a microfluidic cartridge to automate the fluidic handling steps required to carry out a gene expression study of the human leukemia cell line (K562). The fully integrated microfluidic device consists of microfluidic pumps/mixers, fluid channels, reagent chambers, and a DNA microarray silicon chip. Microarray hybridization and subsequent ...
متن کاملIn situ assembly of linked geometrically coupled microdevices.
Complex systems require their distinct components to function in a dynamic, integrated, and cooperative fashion. To accomplish this in current microfluidic networks, individual valves are often switched and pumps separately powered by using macroscopic methods such as applied external pressure. Direct manipulation and control at the single-device level, however, limits scalability, restricts po...
متن کاملPunch Card Programmable Microfluidics
Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter flui...
متن کاملMixers and Pumps for Microfluidic Systems, based on Conducting Polymer Oxidation Wave
Electrochemically-active conducting polymers (ECP) swell or shrink in response to ion and solvent incorporation or ejection as a result of electrochemical reaction of the polymer. As a consequence, they are, in principle, attractive materials to consider for inducing fluid motion of electrolytes in microfluidic systems. When anodic potential is applied to an electrode attached to one end of ECP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2008